
Kishwaukee College Syllabus

CIS 250 - 5001

C++ Programming II

3 Credit Hours, Spring 2018

Course Description

The second course in the C++ language. Abstract data types will be used in the design and implementation

of solutions to large-scale problems. Topics include: classes, inheritance, polymorphism, and

encapsulation; files and pointers; scope, blocks and dynamic memory; recursion; data structures including

stacks, lists, queues, trees; graphs; text processing; and searching and sorting algorithms. Programming

assignments will be completed outside of class. IAI CS 912. Three hours lecture/discussion a week.

Prerequisite: CIS 150.

Meeting Time and Place

Lecture/Lab:

A-1374

Time: 12:30 P.M. - 1:45 P.M. Monday, Wednesday

Dates: 1/17/18 - 5/16/18

Withdrawal date: 4/27/18

MLK Birthday observed: 1/15/18 School closed

Spring break: 3/12/18 - 3/18/18 School closed

Faculty development: 3/29/18 School closed

Good Friday: 3/30/18 School closed

Midterm exam: 3/7/18 during class

Final exam: 5/14/18 Noon - 1:50 P.M.

Instructor Information
Instructor:

David G. Klick

Office: A-1342

Email: dklick@kish.edu

Phone: 815/825-9337

Website: kermit.kish.edu/~dklick/

Backup website: klickfamily.com/david/school/

Desire2Learn: https://kish.desire2learn.com/

Division Secretary: 815/825-9380 (Brianna Hooker)

Office hours: M 1:45 P.M. - 2:30 P.M., 5:00 P.M. - 6:00 P.M.

T 1:45 P.M. - 2:30 P.M., 5:00 P.M. - 6:00 P.M.

W 10:00 A.M. - 11:00 A.M.

R 10:45 A.M. - 11:45 A.M.

other times by appointment

http://kermit.kish.edu/~dklick/
http://klickfamily.com/david/school/
https://kish.desire2learn.com/

Expected Learner Outcomes

Upon completion of this course, the student will be able to:

1. generate reports and process text

2. use sequential and random access files to save and retrieve data

3. create, use and destroy objects

4. control access to object member data and member functions

5. overload and override methods

6. overload operators

7. create new classes derived from existing classes

8. declare and use virtual functions

9. implement a number of data types including lists, stacks, queues, and trees

10. discuss graphs

11. discuss algorithm complexity

12. create and manage programs with multiple source files

Required Text and Materials
1. Malik, D. (2013). C++ Programming: Program Design Including Data Structures, 6th edition.

Boston, Massachusetts: Course Technology. [ISBN-10: 1-1335-2632-2, ISBN-13: 978-

1133526322]

4th, 5th, and 7th editions acceptable also

2. Internet access

Breakdown of Course Requirements
10 programs @ 50 points each

500 points

1 midterm exam @ 100 points 100 points

1 final exam @ 100 points 100 points

Total 700 points

Final Grade Determination
A = 90 - 100%

630 points or more

B = 80 - 89.9% 560 - 629 points

C = 70 - 79.9% 490 - 559 points

D = 60 - 69.9% 420 - 489 points

F = below 60% less than 420 points

Grade reports will not be mailed out. Please check KishSOS,

My Student Info, under Academic Profile, Grades, for grade reports.

Course Procedures
1. Students are expected to attend class sessions on time and prepared (Note: CIS 123 class

sessions are optional attendance). Students should bring whatever they need to take notes to every

class.

2. Food and beverages are not permitted in the classrooms or labs. See a more detailed policy at

http://kermit.kish.edu/~dklick/foodDrinkPolicy.html

3. Cellphones, music players, etc. must be turned off in class.

4. Students are expected to spend time outside of class completing assignments.

5. A familiarity with computers and the Windows operating system is expected.

6. Depending on the assignment, both digital and hardcopy versions of assignments may be required

for submission. The procedure for submitting digital copies of assignments will be explained in

class. Make sure you always keep a copy of all of your assignments. The instructor is NOT

responsible for network failures, server failures, or student mistakes.

7. The instructor answers many questions via email. Due to the high volume of requests, submissions,

and questions received via email, the instructor must prioritize responses. Most questions will be

answered (or at least acknowledged) within 48 hours. If you do not get a response when you expect

one, please keep in mind that your email may have failed to reach the instructor, or may have

automatically been rejected by an email client or server. Please try to contact the instructor again

and possibly use the phone or an in-person visit if email is failing.

Make-up Policy
1. Assignments are to be turned in on time. Assignments which are not turned in on time will not be

accepted unless individual arrangements are made in advance with the instructor. In unusual

cases where late assignments are accepted, the cost of being late is ten percent of the total

possible points for every portion of a day late, up to a maximum of three days late. For example,

an assignment received twenty-five hours past its due date will lose twenty percent of its total

possible point value (because it is two days late). Assignments which are received more than three

days (seventy-two hours) late will not be accepted and are not worth any points. Exceptions may

be made to this rule if the student contacts the instructor before the due date and makes special

arrangements in advance with the instructor. All late acceptance decisions of this nature are left

solely to the discretion of the instructor. This rule does not apply once answers to an assignment

have been distributed or posted. Assignments submitted after answers have been released are

worth zero points even if the answers are posted one minute past the due date.

2. Answers to assignments may be posted online, handed out in class, or sent via email by the

instructor. Once an answer to an assignment has been released, no further submissions for the

assignment will be allowed. This rule supersedes all other rules about when late assignments may

be accepted. In general, the instructor will try to wait at least forty-eight hours before posting or

distributing solutions, but there is no guarantee, so get your assignments in on time.

http://kermit.kish.edu/~dklick/foodDrinkPolicy.html

3. Tests are to be taken at the day and time scheduled. Failure to take a test at the scheduled time

may result in a grade of 0 for that test. In the case of an excusable absence or a genuine

emergency, the instructor must be contacted as soon as possible, preferably before the scheduled

test, to reschedule the makeup of that test in the Learning Skills Center on the day the student

returns to campus.

Attendance Policy

Class attendance is strongly encouraged. You are responsible for whatever was covered in class, whether

you are there or not. If you must miss a class, it is your responsibility to contact the instructor and make

arrangements for notes, handouts, or announcements that were missed. Although attendance is not

counted toward the final grade, there may be coursework which is done during class time which may count

toward the final grade and may not be able to be taken outside of class time.

Kishwaukee College Policies and Resources

It is the responsibility of the student to be aware of Kishwaukee College Policies & Resources found on this

link: kish.edu/kcsyllabuspolicies

Tentative Weekly Schedule

Please note that this schedule and the topics covered are likely to change. Changes will be announced in

class. If you are not able to attend class, it is your responsibility to find out what was covered. A more

detailed schedule is provided on the course website. Assignment descriptions and due dates will also be

posted on the course web site.

Week Date Topics Reading

1 1/15,
1/17

I/O and formatting

 School closed on 1/15 for MLK observance

 review syllabus

 compiling and running programs on the remote server

 assignment submission

 using cin, get, and ignore

 using peek and putback

 detecting input stream failure and using the clear function

 formatting output: setprecision, fixed, showpoint, setw,
setfill, left, right

 additional formatting manipulators: dec, hex, oct, showbase,
boolalpha, etc.

 I/O using string objects

 debugging using cout statements

 text file input and output

Syllabus
Chapter 3

2 1/22,
1/24

User-defined functions

 function prototypes

 void vs. value returning functions

 formal parameter lists

 parameters vs. arguments

 default values for parameters

Chapter 6

http://kish.edu/kcsyllabuspolicies

 function overloading

 passing by value, passing by reference, and reference
variables

 "returning" more than one value from a function

 variable/identifier scope (global, local)

 variable lifetime (static, automatic)

 how/where variables are stored in memory: stack vs. heap

 testing functions

 a brief introduction to recursion

3 1/29,
1/31

User-defined simple types, namespaces, string objects

 declaring enumerations

 declaring variables with an enumeration data type

 using enumerations (operators, I/O, passing to/from
functions)

 the importance of using enumerations

 creating and using namespaces (example: kishio I/O library)

 declaring and using C++ string objects

Chapter 7

4 2/5,
2/7

Arrays and C-style strings

 declaring one-dimension arrays

 accessing a member of a one-dimension array

 initializing a one-dimension array during declaration

 passing one-dimension arrays to functions (passed by
reference)

 using a loop to iterate through the elements of a one-
dimension array

 common errors trying to access non-existent array elements

 using an array name as a pointer to the first element

 using the const keyword to prevent changes to a passed
array

 declaring and using C-style strings (arrays of type char)

 comparing C-style strings

 performing I/O with C-style strings

 declaring and using parallel arrays

 declaring two-dimension arrays

 accessing a member of a two-dimension array

 initializing a two-dimension array during declaration

 passing two-dimension arrays to functions (passed by
reference)

 using nested loops to iterate through the elements of a two-
dimension array

 arrays of objects (such as C++ string objects)

 extending array concepts beyond two dimensions

Chapter 8

5 2/12,
2/14

Structs and classes

 defining a struct or class

 declaring variables with a struct or class data type

 accessing members of a struct or class

 specifying public and private access

 the differences between a struct and a class

 passing structs and classes to and from functions

 creating an array of a struct or class type

Chapters
9, 10

 using assignment with a struct or class

 built-in operations

 struct/class scope

 accessor and mutator functions

 constructors

 default constructor

 destructors

 static class members (including initialization of static
variables)

 the importance of information hiding

 UML diagrams of classes

6 2/19,
2/21

Inheritance and composition

 overriding member functions

 constructors of derived and base classes

 destructors in a derived class

 header files and header guards

 protected class members

 public vs. private vs. protected

 composition

Chapter 11

7 2/26,
2/28

Exception handling

 throwing an exception

 using try/catch blocks

 rethrowing an exception

 creating your own exception class

 exception handling techniques

 using assertions

 exceptions vs. assertions

 error handling techniques (terminate, fix and continue, log
and continue)

Chapter 14

8 3/5,
3/7

Pointers, classes, virtual functions, lists, midterm exam

 declaring and initializing pointer variables

 the address-of operator (&)

 the dereferencing operator (*)

 dynamic memory; using new and delete

 operations on pointer variables

 creating and using dynamic arrays

 shallow vs. deep copies

 functions that objects with dynamic memory should
implement/override

 functions that need special care when using pointers
(constructor, copy constructor, assignment operator,
destructor)

 inheritance, pointers, and virtual functions

 abstract classes and pure virtual functions

 demonstrate polymorphism

 array-based lists

 unordered lists

 ordered lists

 midterm exam

Chapter 12

 3/12 -
3/18

School closed for Spring break

9 3/19,
3/21

Overloading and templates

 the reasons for operator overloading

 restrictions on operator overloading

 overloading binary operators

 overloading unary operators

 overloading binary operators

 member vs. non-member syntax for overloading functions

 friend functions

 overloading the stream insertion operator (<<)

 overloading the stream extraction operator (>>)

 specifying post-increment and post-decrement operator
overloads

 overloading the assignment operator

 overloading the array index operator ([])

 function templates

 class templates

Chapter 13

10 3/26,
3/28

Recursion

 definition of recursion

 direct and indirect recursion

 avoiding infinite recursion

 recursion vs. iteration

 when to use (or not use) recursion

 School closed on 3/29 for faculty development

 School closed on 3/30 for Good Friday

Chapter 15

11 4/2,
4/4

Linked lists

 header and implementation files (revisited)

 structure of a linked list and its nodes

 basic implementation of a linked list

 implementing a copy constructor, assignment operator, and
destructor

 operations on a linked list (insertion, deletion, access
elements, display, etc.)

 basic introduction to algorithm complexity analysis: linked
list operations

 templating a linked list

 linked list iterators

 linked list variation: doubly linked list

 linked list variation: unordered list base class

 linked list variation: ordered list derived class

Chapter 16

12 4/9,
4/11

Stacks, queues

 structure of a stack (LIFO)

 basic implementation of a stack

 implementing a copy constructor, assignment operator, and
destructor

 operations on a stack (push, pop, peek/top, isEmpty/empty)

 templating a stack

 implementing a stack using a linked list

Chapter 17

 implementing a stack using an array

 stack applications

 structure of a queue (FIFO)

 basic implementation of a queue

 implementing a copy constructor, assignment operator, and
destructor

 operations on a queue (add, remove, isEmpty/empty)

 templating a queue

 implementing a queue using a linked list

 implementing a queue using an array

 queue applications

 queue variation: ring buffer

 queue variation: double ended queue (deque)

13 4/16,
4/18

Searching and sorting

 sequential search

 binary search

 restrictions on binary search (data must be in sorted order)

 algorithm complexity analysis of linear and binary search

 basic sorting algorithm implementation: insertion sort

 basic sorting algorithm implementation: selection sort

 basic sorting algorithm implementation: bubble sort

 advanced sorting algorithm walk-through: quick sort

 advanced sorting algorithm walk-through: merge sort

 introduction to binary tree structure and properties

 binary tree variation: the heap data structure

 minheaps vs. maxheaps

 implementing a heap using an array

 advanced sorting algorithm walk-through: heap sort

 advanced sorting algorithm walk-through: bogosort/Robsort

 algorithm complexity analysis of sorting algorithms

 sorting arrays vs. linked lists

Chapter 18

14 4/23,
4/25

Binary trees

 properties of a binary tree (revisted)

 properties of a binary search tree (BST)

 implementation of a binary search tree

 operations on a binary search tree: insert, delete, search,
traverse, isEmpty

 avoiding degenerate binary search trees when inserting
sorted data: balanced BSTs

 BST traversal: inorder, preorder, postorder

 finding a BST's minimum and maximum values

 finding the successor or predecessor of a node in a BST

 various ways of handling duplicate values in a BST

 using recursion vs. iteration when traversing a BST

 algorithm complexity analysis for BST operations

 BST applications

Chapter 19

15 4/30,
5/2

Graphs

 graph terminology: vertex, edge, neighbor, weighted,
directed, acyclic, connected, etc.

Chapter 20

 graph data structures: vertex list, edge list, adjacency list,
adjacency matrix

 adding a vertex

 adding an edge

 breadth-first traversal

 depth-first traversal

 determining if a path exists

 determining if a graph is connected

 finding a minimum spanning tree

 finding a shortest path

 graph applications

16 5/7,
5/9

Binary files and random access files

 writing binary data

 reading binary data

 writing to a random access file

 reading from a random access file

 advantages and disadvantages of binary files

 advantages and disadvantages of random access files

Appendix E

Finals 5/14 Final exam: Noon - 1:50 P.M., Rm. A-1374

Addendum
Suggested assignment topics:

1. file I/O, output formatting, implementing an algorithm

2. functions, error checking, exceptions

3. two dimensional array processing

4. array processing, classes

5. inheritance, addition OOP techniques

6. classes, operator overloading

7. linked lists, templates

8. classes, stacks, linked lists

9. modify and use a binary search tree

10. modify and use a graph class

