Kishwaukee College Syllabus CIS 150 - 5002 C++ Programming I 3 Credit Hours, Spring 2018

Course Description

The first course in the C++ language sequence. It emphasizes a disciplined approach to problem solving and algorithm development. Topics will include: input, output, sequence, selection, repetition, functions, arrays, data abstraction, pointers, text manipulation, records, and files. Program design, style, documentation, and testing will be practiced. Programming assignments will be completed outside of class.

Three hours lecture/discussion a week. IAI: CS 911

Prerequisite: Appropriate Mathematics placement test score or MAT 086 or MAT 098

Meeting Time and Place

Lecture/Lab: A-1374

Time: 6:00 P.M. - 8:45 P.M. Tuesday

Dates: 1/16/18 - 5/16/18

Withdrawal date: 4/27/18

MLK Birthday observed: 1/15/18 School closed Spring break: 3/12/18 - 3/18/18 School closed Faculty development: 3/29/18 School closed Good Friday: 3/30/18 School closed Midterm exam: 3/6/18, 4/10/18 during class

Final exam: 5/15/18 6:00 P.M. - 7:50 P.M.

Instructor Information

Instructor: David G. Klick

Office: A-1342

Email: dklick@kish.edu

Phone: 815/825-9337

Website: <u>kermit.kish.edu/~dklick/</u>

Backup website: klickfamily.com/david/school/
Desire2Learn: https://kish.desire2learn.com/
Division Secretary: 815/825-9380 (Brianna Hooker)

Office hours: M 1:45 P.M. - 2:30 P.M., 5:00 P.M. - 6:00 P.M.

T 1:45 P.M. - 2:30 P.M., 5:00 P.M. - 6:00 P.M.

W 10:00 A.M. - 11:00 A.M. R 10:45 A.M. - 11:45 A.M. other times by appointment

Expected Learner Outcomes

Upon completion of this course, the student will be able to:

- 1. get input from the keyboard and place output on the screen
- 2. use control-flow statements in C++ to achieve branching and repetition
- 3. define and discuss functions as used in C++
- 4. code and run programs using library functions and user-written functions
- 5. define and discuss variable scope and class
- 6. code and run programs using arrays, pointers and reference variables
- 7. compare and contrast the basic data types, structures and classes
- 8. code and run programs including structures and classes
- 9. code and run programs using data files

Required Text and Materials

- Vahid Frank and Roman Lysecky. KISHWAUKEECOLLEGECIS150KlickSpring2018
 Programming in C++. Zyante Inc. Copyright 2018. This book is an online, interactive book. Sign up at <u>zyBooks.com</u>, enter zyBook code KISHWAUKEECOLLEGECIS150KlickSpring2018 and click Subscribe
- 2. Internet access
- 3. A standard modern C++ compiler (available free via the Internet)

Breakdown of Course Requirements

10 programming projects @ 30 points each	300 points
10 labs @ 10 points each	100 points
11 chapter challenges @ 15 points each	165 points
2 midterm exams @ 75 points	150 points
1 final exam @ 85 points	85 points
Total	800 points

Final Grade Determination

A = 90 - 100%	720 points or more
B = 80 - 89.9%	640 - 719 points
C = 70 - 79.9%	560 - 639 points
D = 60 - 69.9%	480 - 559 points
F = below 60%	less than 480 points

Grade reports will not be mailed out. Please check KishSOS,

My Student Info, under Academic Profile, Grades, for grade reports.

Course Procedures

- 1. Students are expected to attend class sessions on time and prepared (Note: CIS 123 class sessions are optional attendance). Students should bring whatever they need to take notes to every class.
- 2. Food and beverages are not permitted in the classrooms or labs. See a more detailed policy at http://kermit.kish.edu/~dklick/foodDrinkPolicy.html
- 3. Cellphones, music players, etc. must be turned off in class.
- 4. Students are expected to spend time outside of class completing assignments.
- 5. A familiarity with computers and the Windows operating system is expected.
- 6. Depending on the assignment, both digital and hardcopy versions of assignments may be required for submission. The procedure for submitting digital copies of assignments will be explained in class. Make sure you always keep a copy of all of your assignments. The instructor is NOT responsible for network failures, server failures, or student mistakes.
- 7. The instructor answers many questions via email. Due to the high volume of requests, submissions, and questions received via email, the instructor must prioritize responses. Most questions will be answered (or at least acknowledged) within 48 hours. If you do not get a response when you expect one, please keep in mind that your email may have failed to reach the instructor, or may have automatically been rejected by an email client or server. Please try to contact the instructor again and possibly use the phone or an in-person visit if email is failing.

Make-up Policy

- 1. Assignments are to be turned in on time. Assignments which are not turned in on time will not be accepted unless individual arrangements are made in advance with the instructor. In unusual cases where late assignments are accepted, the cost of being late is ten percent of the total possible points for every portion of a day late, up to a maximum of three days late. For example, an assignment received twenty-five hours past its due date will lose twenty percent of its total possible point value (because it is two days late). Assignments which are received more than three days (seventy-two hours) late will not be accepted and are not worth any points. Exceptions may be made to this rule if the student contacts the instructor before the due date and makes special arrangements in advance with the instructor. All late acceptance decisions of this nature are left solely to the discretion of the instructor. This rule does not apply once answers to an assignment have been distributed or posted. Assignments submitted after answers have been released are worth zero points even if the answers are posted one minute past the due date.
- 2. Answers to assignments may be posted online, handed out in class, or sent via email by the instructor. Once an answer to an assignment has been released, no further submissions for the assignment will be allowed. This rule supersedes all other rules about when late assignments may be accepted. In general, the instructor will try to wait at least forty-eight hours before posting or distributing solutions, but there is no guarantee, so get your assignments in on time.

3. Tests are to be taken at the day and time scheduled. Failure to take a test at the scheduled time may result in a grade of 0 for that test. In the case of an excusable absence or a genuine emergency, the instructor must be contacted as soon as possible, preferably before the scheduled test, to reschedule the makeup of that test in the Learning Skills Center on the day the student returns to campus.

Attendance Policy

Class attendance is strongly encouraged. You are responsible for whatever was covered in class, whether you are there or not. If you must miss a class, it is your responsibility to contact the instructor and make arrangements for notes, handouts, or announcements that were missed. Although attendance is not counted toward the final grade, there may be coursework which is done during class time which may count toward the final grade and may not be able to be taken outside of class time.

Kishwaukee College Policies and Resources

It is the responsibility of the student to be aware of Kishwaukee College Policies & Resources found on this link: <u>kish.edu/kcsyllabuspolicies</u>

Tentative Weekly Schedule

Please note that this schedule and the topics covered are likely to change. Changes will be announced in class. If you are not able to attend class, it is your responsibility to find out what was covered. A more detailed schedule is provided on the course website. Assignment descriptions and due dates will also be posted on the course web site.

Week	Date	Topics
1.	1/16	Overview of course and introduction to programming (Chapter 1)
		School closed for MLK birthday observance on 1/15
		syllabus
		C++ compilers, MSDNAA downloads
		intro to zybooks.com
		writing a simple program, using Visual Studio
		program structure, basic input and output, comments, errors
		basic programming concepts
2	1/23	Variables, expressions, and assignment statements (Chapters 1 and 2)
		identifiers, variables, and constants
		assignment statements and arithmetic expressions
		data types in C++

\$1.00 \$1.00		the binary number system
		output formatting
		Chapter 1 challenge activities due
		Chapter 2 challenge activities due
		In-class lab: Input, output, expressions, calculations
3	1/30	More variables and basics (Chapter 3)
		characters and strings
		overflow
		number types and unsigned numbers
	TE SATE OF	type conversions
		math functions
		random numbers
		debugging
	YX (Service)	style guidelines
		Chapter 3 challenge activities due
		Program due: Input, output, calculations
4	2/6	Selection (Chapter 4)
		the Boolean (bool) data type
		logical operators
AND CONTROL	7X SAVX SAV	relational operators
		using "if" and "if/else" selection statements
		using the "switch" selection statement
		the conditional (?) operator
		Chapter 4 challenge activities due
		In-class lab: Selection, calculation, output formatting
5	2/13	Repetition (Chapter 5)
	ye was a second	using the "while" statement
		using the "do/while" statement
		using the "for" statement
		nested loops
		increment and decrement operators

		[2] (10 전 10
		the "break" and "continue" statements
		loop counters and sentinel values
	A. 3.3.3	accumulators
		Chapter 5 challenge activities due
		In-class lab: Repetition, input validation
		Program due: Selection, output formatting
6	2/20	Functions (Chapter 6)
		breaking a program into simpler, modular pieces
		creating and using simple functions
		declaring and defining functions
		calling functions
	A. 3.3.3	passing values to functions
		returning values from functions
		how functions work
		In-class lab: Functions, input validation
		Program due: Repetition
7	2/27	Functions continued (Chapter 6)
		common errors in functions
		passing references to functions
		variable scope and lifetime in functions
		default parameter values
		overloading functions
		unit testing for functions
		Chapter 6 challenge activities due
		Program due: Functions, input validation
8	3/6	Application of concepts so far and Midterm exam
		In-class demonstration of concepts covered so far
		Midterm exam #1: input, output, variables, calculations, selection,
		repetition
		Program due: Functions

	3/13	School closed 3/12 - 3/18 for Spring Break
9	3/20	File I/O (Chapter 7), Arrays (Chapter 8)
		declaring arrays
		initializing arrays
		array bounds
		accessing array values
		processing arrays
		In-class lab: Sequential (text) file input/output
10	3/27	Arrays (Chapter 8)
		creating and using arrays of strings
		passing arrays to functions
		Chapter 8 challenge activities due
		In-class lab: Creating and using arrays
		In-class lab: Pointers and arrays
		Program due: Sequential (text) file I/O
		School closed on 3/29 for faculty development
		School closed on 3/30 for Good Friday
11	4/3	Searching and sorting arrays (notes on course website)
		String and character operations (Chapter 9)
		char data type operations
		C++ string access and modification operations
		C-style strings (char arrays) and associated operations
		Chapter 9 challenge activities due
		In-class lab: Sorting
		Program due: Arrays
12	4/10	Pointers and reference variables (chapter 10)
		declaring pointer variables
		initializing pointer variables
		the address-of operator (&)

41) X 12 (41) X 14 (7 \(\(\)
		using pointer variables, de-referencing (*)	
		dynamic memory allocation	
		releasing dynamic memory	
		working with pointers	
		using reference variables instead of pointers	
		types of memory: heap vs. stack	
		memory leaks	
		functions: passing by value vs. passing by reference	
		functions: passing pointers	
		functions: passing reference variables	
		Chapter 10 challenge activities due	
		Midterm exam #2: functions, arrays, sequential (text) file I/O	
13	4/17	Enumerations and structured data (Chapter 11)	
		defining and accessing structures	
		passing structures to functions	
		arrays and pointers to structures	
		Chapter 11 challenge activities due	
		Program due: Pointers, arrays, sorting	
14	4/24	Advanced file operations (notes on course website)	
		reading and writing binary file data	
		implementing random access files using C++	
		In-class lab: Random access (binary) file input/output	
15	5/1	Introduction to classes (Chapter 12)	
		introduction to objects	
		introduction to classes	
		defining class members	
		defining access: private and public	
		the difference between a class and a struct	
		constructors and member initialization	
		overloading	
		destructors	

		accessors mutators Chapter 12 challenge activities due In-class lab: Classes and objects Program due: Random access (binary) file I/O, structs
16	5/8	Exceptions (Chapter 13) exception basics using exceptions with functions multi-file programs separating header and implementation files for classes preprocessor directives: include, define namespaces Program due: Classes, objects
17	5/15	Final exam: 6:00 P.M 7:50 P.M., Rm. A-1374 comprehensive with emphasis on classes, objects, random access (binary) file I/O

Addendum

Suggested assignment topics:

- 1. input, calculations, output
- 2. calculations, selection, formatted output
- 3. repetition
- 4. functions, input validation
- 5. text file processing
- 6. array processing
- 7. pointers, array processing
- 8. functions, implementing a sort of an array
- 9. binary file input/output
- 10. classes and objects, multiple file compilation